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A computational setting for the Immersed Boundary Method employing an adap-
tive mesh refinement is presented. Enhanced accuracy for the method is attained
locally by covering an immersed boundary vicinity with a sequence of nested, pro-
gressively finer rectangular grid patches which dynamically follow the immersed
boundary motion. The set of equations describing the interaction between a non-
stationary, viscous incompressible fluid and an immersed elastic boundary is solved
by coupling a projection method, specially designed for locally refined meshes, to
an implicit formulation of the Immersed Boundary Method. The main contributions
of this work concern the formulation and the implementation of a multilevel self-
adaptive version of the Immersed Boundary Method on locally refined meshes. This
approach is tested for a particular two-dimensional model problem, for whichno sig-
nificant differenceis found between the solutions obtained on a mesh refined locally
around the immersed boundary, and on the associated uniform mesh, built with the
resolution of thefinest level. c© 1999 Academic Press
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1. INTRODUCTION

Many problems in biofluid dynamics involve the interaction between a non-stationary,
incompressible viscous fluid and a visco-elastic biological tissue, which may have time-
dependent configuration, time-dependent elastic properties, or both (e.g., the interaction
between blood, heart muscles, and heart valve leaflets). Although these problems can be
handled in a robust manner by theImmersed Boundary Methodand qualitatively good
results be obtained [10, 14, 15, 27–29, 32, 35], this method suffers from a certain “lack of
resolution.” Thin boundary layers, which usually develop along the biological tissue, and fine
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geometrical details can be adequately resolved only if the computational mesh is very fine. If
a uniform mesh is used, this requirement is inevitably extended to the entire computational
domain, and the resulting mesh may exceed the storage capacity of the computer.

This accuracy issue introduced by localized phenomena around some kind of interface
is common to many problems, arising in many different fields. In the past few years, much
effort was spent to have this issue appropriately addressed and, as a result, severaladaptive
methodswere introduced.

Employing a very particular approach, Li [22, 23] and LeVeque and Li [20, 21] developed
the Immersed Interface Method, designed to solve problems with non-smooth solution
across interfaces. The method adapts the finite difference scheme in a neighborhood of the
interface to obtain an equally accurate solution at all points on a uniform Cartesian grid.
The main idea is to incorporate the known jumps in the solution or in its derivatives across
the interface into the scheme, obtaining a modified scheme close to the interface.

Level set methods, in combination with adaptive mesh refinements, were considered by
Haj-Hariri, Shi, and Borhan [17], who studied the three-dimensional motion of deformable
viscous drops, and by Sussmanet al.[36, 37], who studied incompressible two-phase flows
with surface tension, two-dimensional axisymmetric and fully three-dimensional air bubbles
and water drops.

In the context of gas dynamics, Bayyuk, Powell, and van Leer [3] introduced a method
for performing simulations of Euler flows around moving and deforming bodies in two di-
mensions; their method employed Cartesian, unstructured, quadtree-based grids and finite-
volume conservative discretization. Greenoughet al. [16] presented an interface-capturing
method coupled to a local mesh adaptive refinement for solving compressible multifluid
equations in complex geometries.

More recently, in the context of unsteady, incompressible flows, Agresar [1], and Agresar
et al. [2] performed simulations of moving and deforming circulating cells, tracking ex-
picitly cell interfaces employing the Euler–Lagrangian method developed by Unverdi and
Tryggvason [39], while solving the fluid equations on the adaptive, unstructured Cartesian
grids of Bayyuk, Powell, and van Leer [3].

Still in the context of unsteady, incompressible flows, Roma [34] introduced a new
computational setting for the Immersed Boundary Method employing a hierarchical, nested
adaptive mesh refinement [6–9, 33]. In this approach, accuracy enhancement can be achieved
by covering locally an immersed boundary vicinity with a sequence of nested, progressively
finer rectangular grid patches which dynamically follows the immersed boundary motion.

Here, thisadaptive versionof the Immersed Boundary Method is presented, and a more ef-
ficient dynamical strategy for recomputing the locally refined meshes introduced. Section 2
presents the fluid–interface interaction equations for the model problem to be considered.
Section 4 explains how locally refined grids are generated and updated, while Sections 3, 5,
and 6 present the discretizations of the equations in time and space on these grids. Section 7
highlights the numerical scheme employed to solve the discretized set of equations for the
specific model problem considered, and Sections 8 and 9 present the numerical results and
the conclusions, respectively.

2. STATEMENT OF THE PROBLEM

Consider a two-dimensional incompressible fluid which contains an immersed bound-
ary (immersed elastic interface supposed to be infinitely thin and massless). Using the
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Immersed Boundary Method formulation, one can write the equations of motion of the
system composed of the fluid and the immersed boundary as

∂u
∂t
+ ∇ p

ρ
= µ

ρ
1u− u · ∇u+ F

ρ
(1)

∇ · u = 0, (2)

where

F(x, t) =
∫
S

f(s, t) δ(x− X(s, t)) ds (3)

f(s, t) = ∂(Tτ )

∂s
(4)

with

∂X(s, t)
∂t

=
∫
Ä

u(x, t) δ(x− X(s, t)) dx. (5)

In (1)–(2), the physical parametersρ andµ, assumed to be constants, are respectively the
mass density and the viscous coefficient of the fluid,p is the hydrodynamical pressure,u is
the fluid velocity, andF, which usually would be an external force field, in this context rep-
resents the singular elastic force distribution (3), differing from zero only on the immersed
boundary pointsX(s, t), whereδ(·) is the two-dimensional Dirac delta;p, u, andF are
functions of the timet and of theEuleriancoordinatex, which is defined on a rectangular
domainÄ.

The elastic force densityf(s, t) in (4), defined along the immersed boundary, is a function
of the unit tangent to the immersed boundary,τ ,

τ = ∂X/∂s

‖∂X/∂s‖ , (6)

and of the immersed boundary tensionT , which will be introduced for a special case below.
Although the derivation of (4) will not be included here, it can be found in [28].

The shape of the immersed boundary may be quite complicated and its motion not known
in advance. Since the elastic force distributionF is computed from the configuration of the
immersed boundary, the position of each one of its pointsX(s, t) must be tracked in a
Lagrangianfashion, withs ∈ S the Lagrangian parameter. As a result of the fluid viscosity,
one has (5), which states that the immersed boundary points move at the local fluid velocity.

The set of equations (1)–(6) is given in a mixed Euler–Lagrangian formulation. As a
special case, consider the model problem given by a simple, closed curve for which

T(s, t) = T0

∥∥∥∥∂X
∂s
(s, t)

∥∥∥∥, (7)

whereT0 is a non-negative constant, ands ∈ S, S= [0, 2π ], with the points= 0 identified
with the points= 2π .

Note that, in order to have the problem completely posed, one has to provide an initial
condition for the system(X, u) and a boundary condition foru. To simplify the problem,
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FIG. 1. Grid lines (left) and grid patches (right).

periodic boundary conditions foru will be adopted. The initial state of the system will be
provided later.

If T0 is equal to zero in (7), the immersed boundary will not be elastic and it will be
carried passively by the fluid. On the other hand, ifT0 is greater than zero, the problem
is the two-dimensional analog of an elastic spherical balloon, filled with the same fluid
present outside, whose motion is driven by the elastic force acting on its wall. In this case,
the immersed boundary tends to shrink to a point but it is prevented from doing so by the
incompressibility of the fluid. Also, because of the fluid incompressibility, the immersed
boundary equilibrium configuration is a circle that encloses the same area as its initial
configuration.

Considering (4) and (6)–(7), one can write the elastic force density for this model problem
as

f(s, t) = T0
∂2X(s, t)
∂s2

. (8)

Equations (1)–(5) can be naturally divided into two groups: one, theNavier–Stokes equa-
tions (1)–(2), describing the motion of the incompressible viscous fluid, and the other
one, thefluid-boundary interaction equations(3)–(5), describing the interaction between
the fluid and the immersed boundary. The next sections present a discretized form of these
equations for the model problem introduced, which will be solved numerically oncomposite
grids like the one in the Fig. 1.

3. DISCRETIZATION IN TIME

3.1. Navier–Stokes Equations

The numerical solution of the Navier–Stokes equations on composite grids will be com-
puted by a projection method inspired by the projection method introduced by Bell, Colella,
and Glaz [5], and by the approximate projection on locally refined grids developed by
Minion [25], both second-order variations of Chorin’s original projection method [11, 12].

The temporal discretization of the Navier–Stokes equations (1)–(2) is based on a Crank–
Nicholson type of scheme where first the advection–diffusion equation is solved to obtain a
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provisional velocity field, which is then projected onto the space of discretely divergence-
free vector fields (up to a given convergence tolerance).

The starting point is the equations

un+1− un

1t
+ ∇ pn+ 1

2

ρ
= µ

ρ
1

(
un+1+ un

2

)
− [(u · ∇)u]n+ 1

2 + Fn+ 1
2

ρ
(9)

∇ · un+1 = 0. (10)

The superscripts denote instants of time, e.g.,un 8 u(·, tn),Fn+1/2 8 F(·, tn+1/2), where
tn 8 t0+ n1t andtn+1/2 8 t0+ (n+ 1

2)1t . To simplify the problem, only boundary condi-
tions of periodic type are being considered for the velocityu.

Usually, in the Crank–Nicholson scheme the nonlinear advection term attn+1/2 would
be obtained by the average of its value at the timestn and tn+1. Bell, Colella, and Glaz
though, in their second-order projection method [5], introduced anexplicitcomputation of
this term employing an upwind strategy based on the Godunov methodology developed by
Colella [13] which is appropriate for flow at high Reynolds number. Only known values
of the velocityu, the forcing termF, and the approximation to∇ p from the previous
time step are required. Here, for simplicity, this upwind strategy will be replaced by a quite
“standard” second-order spatial discretization. This simpler approximation will be adequate
at moderately high Reynolds number flows which are in sight in future applications (up to
500 or so, e.g., as in the blood flow in the heart chambers). The detailed computation of the
nonlinear advection term is a subject considered in Section 6. For the moment, this term is
assumed to be known.

Instead of trying to solve Eqs. (9)–(10) directly, we use the following iterative approach,

u∗,m − un

1t
+ ∇ pn+ 1

2 ,m−1

ρ
= µ

ρ
1

(
u∗,m + un

2

)
− [(u · ∇)u]n+ 1

2 + Fn+ 1
2 ,m−1

ρ
(11)

un+1,m − un

1t
+ ∇ pn+ 1

2 ,m

ρ
= u∗,m − un

1t
+ ∇ pn+ 1

2 ,m−1

ρ
(12)

∇ · un+1,m = 0, (13)

wherem is the iteration number. Note that (11) is an implicit system to be solved foru∗,m, for
which no constraint of incompressibility is imposed. Moreover, the pressure used is known
from the previous iteration. Also, note that the right-hand side of (12) is the left-hand side
of (11).

For the particular problem considered, the evaluation of the forceF will depend on the
unknown value of the velocityun+1 and, hence, it will depend on the iteration number in a
manner that will become clear in the next section.

3.2. Fluid–Boundary Interaction Equations

Since its introduction by Peskin [26, 27] a serious issue of numerical stability has haunted
the Immersed Boundary Method, whose origin is the stiffness introduced into the problem
through the elastic properties of the immersed boundary.

The elastic force distribution (3) can be computed fromXn, the boundary configuration
at the beginning of the step from time leveln to time leveln+1. But, if the boundary is too
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stiff or if the time step is too large, thisexplicit formulation of the method typically leads
to “explosively” unstable results. One way of improving the stability of the method is to
compute the elastic force not fromXn but fromX∗, an estimateof Xn+1, the configuration of
the immersed boundary at the end of that time step. This is referred to as theapproximately
implicit formulation of the Immersed Boundary Method and was first introduced in [26].
This formulation improves, but does not completely eliminate, the stability problems of the
method.

Tu and Peskin [38] compared the stability properties displayed by three different formu-
lations of the Immersed Boundary Method for a steady Stokes flow. They used the explicit,
the approximately implicit, and a third formulation, which wasimplicit in the computation
of the elastic force densityf(s, t); that is, the elastic force density was computed from the
boundary configuration at the end of the time step,Xn+1, but applied to the fluid at the
boundary configurationXn corresponding to the beginning of the time step (in afully im-
plicit scheme,Xn+1 would be used for both purposes). Significantly more expensive than
the others, this last implementation presented excellent stability properties, seeming to be
unconditionally stable for the model problem used.

In the context of the full Navier–Stokes equations, Mayo and Peskin [24] introduced two
implicit schemes for the Immersed Boundary Method: one implicit only in the elastic forces,
as in the previous work done by Tu and Peskin mentioned above, and the other one fully
implicit. The former, despite having a region of stability greater than the approximately
implicit scheme, still was not unconditionally stable. On the other hand, the fully implicit
scheme presented was always able to preserve the stability. In all cases, the model problem
used was the two-dimensional analog of an elastic spherical balloon, described in Section 1.

Here, yetanother fully implicit scheme is presented. The Crank–Nicholson scheme
(9)–(10) used in the time discretization of the Navier–Stokes equations requires that the
forcing term, appearing in the momentum equations (9), be computed at half-time level. If
the average ofFn andFn+1 is used then anew implicit form of the Immersed Boundary
Method can be proposed. To (9)–(10) one adds

Xn+1− Xn

1t
= 1

2

∫
Ä

[unδ(x− Xn)+ un+1δ(x− Xn+1)] dx (14)

Fn+1 = T0

∫ 2π

0

∂2Xn+1

∂s2
δ(x− Xn+1) ds, (15)

and thenFn+1/2 is defined as

Fn+ 1
2 = 1

2
(Fn + Fn+1), (16)

whereFn is obtained simply by replacingn+ 1 byn in (15).
These equations, together with Eqs. (9)–(10), define a non-linear system for the unknown

boundary configurationXn+1 along with the unknown fluid velocityun+1, which will be
solved numerically by an iterative scheme defined in Section 7.

4. COMPOSITE GRID DESCRIPTION, GENERATION AND REGRIDDING

Peskin and McQueen [28] concluded that the lack of resolution of the Immersed Bound-
ary Method has its origin from local phenomena taking place in a neighborhood of the
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immersed boundary (e.g., boundary layers and singular forces). Roughly speaking, by ap-
plying the method with a second-order fluid solver to a three-dimensional model problem,
they observed through numerical convergence analysis that the fluid solver exhibited a clear
second-order behavior away from the immersed boundary, the behavior being only first-
order when the fluid mesh points close to the immersed boundary were considered in the
analysis.

The existence of local phenomena and the need for more grid points to capture the finer
geometric details of the immersed boundary suggest a possible remedy to the problem: the
application of alocal mesh refinement technique. Employing the composite grids described
by Berger and Colella in [7], refined regions will be covered by a hierarchical sequence
of nested, progressively finer levelsl = 1, 2, . . . , lfinest. Each levell is formed by a set of
disjoint rectangular gridsGl ,k, k = 1, 2, . . . ,nl , that is,

{level l } =
⋃
k

Gl ,k,

with Gl , j ∩ Gl ,k = ∅, j 6= k (two different grids in the same level do not overlap!), which
have the same mesh spacinghl , and whose sides are aligned in the coordinate directions. As
an example,{level 1}=G1,1, whereG1,1 is a global uniform grid coveringÄ, the rectangular
domain used in the model problem considered.

Although in gas dynamics problems refinement in time comes naturally along with re-
finement in space, this will not be the approach employed in this work. No time refinement
will be used. All grids, in all levels, will evolve together in time, with the time step of the
finest level. In the incompressible case, there is not a finite limit to the speed at which dis-
turbances can propagate in the flow. Since each part of the incompressible flow influences
all other parts instantaneously, it is not clear how different time steps could be used on the
different grids.

Grids at different levels in the grid hierarchy must be “properly nested.” This means that
they must satisfy the following two properties:

1. a fine grid starts and ends at the corner of a cell in the next coarser level;
2. there must be at least one level(l − 1) cell in some level(l − 1) grid separating a grid

cell at levell from a cell at level(l − 2), in the north, south, east, and west directions.

Figure 2 shows one grid at level 3,G3,1, two grids at level 2,G2,1 andG2,2, all of them laid
on the underlying uniform gridG1,1, which covers the domain completely.

Typically, the setup of a problem to be solved by the Immersed Boundary Method involves
the formulation of the problem on a “physical” rectangular domain, conveniently sized and
made periodic in all the directions. This domain can be discretized using the composite grids
described. Level 1 is obtained through the uniform division of the domain into a regular
array of computational cells, whose width and height will be assumed to be the same,h1,
for simplicity. Finer rectangular grid patches forming levell , 2 ≤ l ≤ lfinest, have mesh
spacing

hl = h1

r l−1
, (17)

wherer is therefinement ratioused (in general,r = 2 or r = 4).
Generation of the composite grids depends on theflagging step, that is, determining first

the cells whose collection gives the region where refinement is to be applied. Throughout
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FIG. 2. Grid G3,1 spans two coarser grids but it is properly nested.

this work, composite grids will be assumed to completely cover the immersed boundary
with the finest level. Refinement levels are generated one at a time, starting with the finest
level, lfinest, and ending with level 2. The uniform grid at level 1 is always the same and the
total number of levels to be used is decided in advance.

A refinement levell is always generated by flagging cells in the next coarser level, level
(l −1). Flagged cells include not only cells in a vicinity of the immersed boundary but also
those needed to ensure that finer grids at level(l + 1), if any, will be properly nested in
level l . In summary, the collection of level(l − 1) flagged cells is obtained by the two-step
procedure:

1. flag enough cells in a vicinity of the immersed boundary to guarantee that the discrete
delta function adopted will have its support completely contained by grids at the level under
construction;

2. to this collection of cells, add all the cells needed to have level(l + 1) grids properly
nested in levell .

Once the collection of flagged cells is obtained, the grids which will belong to levell
are generated through the application of the algorithm for point clustering developed by
Berger and Rigoutsos [9], which combines elements of both computer vision and pattern
recognition theory. The algorithm returns a set of non-overlapping rectangular patches for
a given collection of flagged cells, finding the “best” places to cut usingsignatures. More
precisely, vertical and horizontal signatures of a functionf (x, y) are defined respectively
as

H(x) =
∫

y
f (x, y) dy

V(y) =
∫

x
f (x, y) dx.

If the function f (x, y) is understood as a binary function which assumes the value 1 at
the flagged cells, and 0 at the other cells, the key idea of the algorithm is to look for the
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zero crossings in the second derivative of the signaturesH(x) andV(y) (inflection points),
since they detect the transitions from flagged to non-flagged regions. The best place to
introduce an edge is indicated by the most “prominent” inflection point. For details, the
interested reader should refer to [9]. This procedure is performed for each level until all the
grid patches have been generated.

Composite grid regridding is performed always when the distance from an immersed
boundary point to the border of the finest level is less than an allowed minimal distance.
This minimal distance depends on the size of the support of the discrete delta function.

Several composite grids may be needed during the resolution of a problem. Their number
depends essentially on the amplitude of the immersed boundary motion. For problems where
its motion is highly localized, for example, few composite grids will have to be generated.

5. DISCRETIZATION IN SPACE

5.1. Location of the Physical Variables

Physical variablesu = (u, v) andp are placed in a MAC staggered grid fashion (Harlow
and Welch [18]). In this discretization, the cells covering the domain are considered “mass
control volumes” where scalar quantities (e.g., pressure, divergence) are defined at the cell
centers and vector quantities (e.g., velocity, forcing terms, pressure gradient) have their
vertical component defined at the middle of the horizontal cell edges and their horizontal
component defined at the middle of the vertical cell edges. At this point, a note on the
convention regarding the spatial indexing of scalar and vectorial quantities seems to be
appropriate. Given a computational cell(i, j ), its left and right midedges will have as
indices(i − 1

2, j ) and(i + 1
2, j ) respectively, and its top and bottom midedges(i, j + 1

2)

and(i, j − 1
2). Velocity ui, j on the cell(i, j ) will be defined by

ui, j 8
(
ui− 1

2 , j
, vi, j− 1

2

)
,

with the horizontal component defined at the middle of the left cell edge and the vertical
component defined at the middle of the bottom cell edge. Although it is arbitrary to associate
(i, j ) with (i − 1

2, j ) and(i, j − 1
2) in this manner, some such notation is needed if one is

to define vector quantities at all. Since scalar quantities are defined at the cell centers, their
indices are simply those defining the cell. It will be also convenient to define auxiliary
computational cells underneath fine grid cells as shown in Fig. 3.

On uniform grids, the MAC location of physical variables has been used for a long time
and has well understood properties. The main reason for its choice in this context was
that away from coarse–fine interfaces, it is possible to define conveniently second-order
approximations for the gradient and for the divergence operators, such that the discretization
of the projection operator presents excellent numerical properties. It is also possible to
adaptmultigrid methodsfor the solution of the pressure Poisson equation resulting from
substituting (13) into (12).

The disadvantages of this approach include the fact that it is not clear how to obtain higher
order discretizations of the nonlinear advection terms preserving the numerical stability in
regions of steep gradients without introducing either nonphysical oscillations or unnecessary
dissipation. This is especially true for flows at high Reynolds numbers. If all the variables
were placed at the cell centers, for example, variations of the Godunov method could be
employed more “naturally” [5, 4, 19, 25].
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FIG. 3. Index location and coarse computational cell underneath finer grid cells.

5.2. Divergence, Gradient, and Laplacian Difference Operators

Given velocity and pressure located as explained above, the divergence and gradient
operators to be used in (11)–(13) are given by

(Du)i, j =
ui+ 1

2 , j
− ui− 1

2 , j

h
+
vi, j+ 1

2
− vi, j− 1

2

h
(18)

(Gp)i, j =
(

pi, j − pi−1, j

h
,

pi, j − pi, j−1

h

)
, (19)

where the time indices were suppressed for clarity. The discretization of the viscous terms
in (11) will be given by the five-point stencil

(Lu)i, j =
(ui+ 1

2 , j
+ ui− 3

2 , j
+ ui− 1

2 , j+1+ ui− 1
2 , j−1− 4ui− 1

2 , j

h2
,

vi, j+ 1
2
+ vi, j− 3

2
+ vi+1, j− 1

2
+ vi−1, j− 1

2
− 4vi, j− 1

2

h2

)
, (20)

which will be also denoted as(Lu)i, j = ((Lu)i−1/2, j , (Lv)i, j−1/2). The difference operators
(18)–(20) are clearly second order away from coarse–fine grid interfaces.

To prevent these operators from being formally redefined at grid borders, an additional
layer of cells is appended around each grid to provide boundary values. These cells are
commonly calledghost cellsand their existence is only for programming purposes. The
values ofu and p at a ghost cell are provided in a manner that depends on whether or not
it coincides with a regular cell belonging to another grid in the same level. If there is such
coincidence, ghost cell values are obtained by simply “importing” them from the sibling
grid, a process often referred to asinjection. On the other hand, if there is not a sibling
grid to provide these values, an interpolation procedure involving values from coarse and
fine grids is employed. Usually, quadratic polynomial interpolation schemes are used to
provide third-order approximate values at the ghost cells. This guarantees second-order
first derivatives but only first-order second derivatives along coarse–fine grid interfaces.
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Nevertheless, when the flow is smooth near these interfaces, it has been observed that
this is enough to furnish a second-order accurate scheme (inL2-norm) [19]. Ghost cells
adjacent to level 1 are set up only through injection by enforcing the periodic boundary
conditions.

Finally, note that difference operators will be also formally kept unchanged on coarser
grids by using the coarse computational cells defined underneath fine grid patches. Their
values are defined through interpolations from finer values. Details of all the interpolation
schemes can be found in [34].

5.3. Discrete Dirac Delta

In order to provide the spatial discretization of Eqs. (14)–(15) it is necessary to furnish a
two-dimensional discrete form for Dirac’s delta function, which will connect the Eulerian
formulation used for the fluid with the Lagrangian formulation used for the immersed
boundary.

The two-dimensional approximation to the delta function is given by the product

δ2
h(x− x0) = δ1

h(x − x0) δ
1
h(y− y0),

where

δ1
h(x − x0) = 1

h
φ

(
x − x0

h

)
, (21)

is an approximation for the one-dimensional delta function, withφ the continuous function

φ(r ) =


1
6(5− 3|r | −

√
−3(1− |r |)2+ 1), 0.5≤ |r | ≤ 1.5

1
3(1+

√−3r 2+ 1), |r | ≤ 0.5

0, otherwise,

(22)

wherer = (x− x0)/h. The functionφ was not chosen arbitrarily. Actually, it is determined
by requiring that a certain set of properties be satisfied by the discrete version of Dirac’s
delta function. In particular, the set of properties used to determine this approximation were:

1. φ(r ) is continuous for all real numbersr ;
2. φ(r ) = 0, |r | ≥ 1.5;
3.
∑

i φ(r − i ) = 1, ∀r ;
4.
∑

i (r − i )φ(r − i ) = 0, ∀r, and
5.
∑

i [φ(r − i )]2 = 1
2, ∀r,

where all the sums are performed for the integersi , such that−∞ < i < +∞.
A novel feature of the delta function defined above is that the size of its support is three

meshwidths in each space direction. Previous immersed boundary computations have used
delta functions whose support was four meshwidths in each direction.

Delta functions previously employed [26, 30] obeyed a list of properties much like those
above but with certain differences. In both [26] and [30], Property 3 was stronger: It required
that the corresponding sums overi odd and overi even each be equal to 1/2. The reason for
this, and why we can do without it here, will be discussed below. In [26], Property 4 was
not used. This led naturally (albeit non-uniquely) to a cosine shaped delta function with
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a support of four meshwidths in each space direction. In [30], Property 4 was added, and
the stronger form of Property 3 was still retained. This led to a uniquely determined delta
function that was remarkably close quantitatively to the cosine shaped delta function, even
though the cosine function does not satisy Property 4 exactly. Here we keep Property 4,
but achieve a delta function with smaller support by using Property 3 in the (weaker) form
stated above.

The reason why the stronger form of Property 3 was needed in previous work is that the
Navier–Stokes equations were discretized employing gradient and divergence difference
operators whose composition led to what looks like a “stretched” version of the usual
five-point stencil for the Laplacian. Roughly speaking, as a consequence, four independent
sets of equations had to be solved in the projection step (see [19] for further comments).
When that happens, the stronger form of Property 3 must be imposed so that each set
of equations receives equivalent contributions coming from the elastic force, with more
grid points needed to satisfy all requirements. In this case, the derivation leads to a delta
function which is usually four-cell supported [30]. The new, three-cell supported delta
function became possible because gradient and divergence operators were discretized on
MAC staggered grids. This approach naturally avoids any decoupling of equations in the
projection step, making no extra property necessary.

The five properties above uniquely determine the functionφ and henceδ1
h. Remarkably,φ

turns out to have a continuous derivative, though this condition was not explicitly imposed.
By Property 1 above, there will be no “jumps” in the interpolation step (14) and in the
spreading step(15) (interpolation of the velocity to and spreading of the force from immersed
boundary points). Property 2 guarantees that the discrete delta function has finite support,
three cells wide in this case.

In the force-spreading operation, Property 3 guarantees conservation of momentum.
Properties 3 and 4 together guarantee conservation of angular momentum, and that the
interpolation of linear functions will be exact, that is, smooth functions are interpolated to
second-order accuracy.

Property 5 arises from considering how the force due to an immersed boundary point
influences the motion of that same point, and from requiring that this influence be the same
regardless of the position of the immersed boundary point relative to the mesh. Further
explanations are found in [26, 30]. Note that the constant 1/2 in the fifth property is not
arbitrary. It can actually be obtained by settingr = 0.5 and by performing some algebraic
manipulations on the set of properties. Similarly, in the conditionφ(r ) = 0 for |r | ≥ 1.5, the
constant 1.5 is not arbitrary. It is the smallest constant consistent with the other conditions.

Finally, it is important to remember that the immersed boundary is covered completely
by grids in the finest level, which is made large enough to contain the entire support of the
discrete Dirac delta.

5.4. Fluid–Boundary Interaction Equations

The full discretization of the fluid–boundary interaction equations (14)–(15) is given by

Xn+1
k − Xn

k

1t
= h2

2

∑
i, j

un
i− 1

2 , j
δ2

h

(
xi− 1

2 , j
− Xn

k

) +un+1
i− 1

2 , j
δ2

h

(
xi− 1

2 , j
− Xn+1

k

)
vn

i, j− 1
2
δ2

h

(
xi, j− 1

2
− Xn

k

) +vn+1
i, j− 1

2
δ2

h

(
xi, j− 1

2
− Xn+1

k

)
 (23)
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Fn+1
i, j = T01s

NB∑
k=1

[(
D+s D−s Xn+1

k

)
δ2

h

(
xi− 1

2 , j
− Xn+1

k

)
(
D+s D−s Yn+1

k

)
δ2

h

(
xi, j− 1

2
− Xn+1

k

) ] , (24)

where1s= L B/NB, L B andNB are the length and the number of discretization points of
the immersed boundary, respectively, and

(D+s X)(s) = X(s+1s)− X(s)
1s

(25)

(D−s X)(s) = X(s)− X(s−1s)

1s
(26)

are difference operators defined along the immersed boundary. Note that since the immersed
boundary is a simple closed curve in the model problem considered, it was found to be most
convenient to identify the first point,X(s1), with the last point, say,X(sNB+1).

The discretizations of the integrals in (14)–(15) were based on the application of the
Trapezoidal Rule for space variables. In what follows, it will be convenient to introduce
some simpler notation to alleviate both the indexing on staggered grids and the somewhat
cumbersome representation of the discretized interaction equations (23)–(24). First, let the
spreading operationperformed at timetn in (24) be described bySn, which will be given by

(Snϕ)(xi, j )=
[
1s
∑

k ϕ1(sk) δ
2
h

((
xi, j − h

2e1
)− Xn

k

)
1s
∑

k ϕ2(sk) δ
2
h

((
xi, j − h

2e2
)− Xn

k

)] (27)

for any vector fieldϕ = (ϕ1, ϕ2) defined on the immersed boundary, wheree1 ande2 are the
unit vectors in thex andy directions, respectively. Note that the conventionXn

k = Xn(sk)

was used, wheresk = s1 + k1s, with s1 some origin arbitrarily chosen for the immersed
boundary parametrization.

Similarly, letS∗n, denoting theinterpolation operationperformed at timetn in Eq. (23),
be defined by

(S∗nψ)(sk)=
[

h2∑
i, j ψ1

(
xi− 1

2 , j

)
δ2

h

(
xi− 1

2 , j
− Xn

k

)
h2∑

i, j ψ2
(
xi, j− 1

2

)
δ2

h

(
xi, j− 1

2
− Xn

k

) ] (28)

for any cell-edge vector fieldψ = (ψ1, ψ2), whereψ1 andψ2 are grid functions defined at
the middle of the vertical and horizontal cell edges, respectively.

In terms of the spreading and interpolation operators (27) and (28), Eqs. (23)–(24) can
be rewritten as

Xn+1
k = Xn

k +
1t

2

[
(S∗nun)(sk)+ (S∗n+1un+1)(sk)

]
(29)

Fn+1
i, j =

[
T0Sn+1

(
D+s D−s Xn+1

)]
(xi, j ). (30)

6. DISCRETIZATION OF THE NONLINEAR ADVECTION TERM

The term [(u ·∇)u]n+1/2 appearing in (9) is computed explicitly in time. A quite standard
second-order spatial discretization of this term will be applied to a predicted value of the
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velocity field at timetn+1/2. Following Bell, Colella, and Glaz [5], the predicted velocity
field will be obtained by the Taylor expansion

u
n+ 1

2
i, j = un

i, j +
1t

2
(ut )

n
i, j ,

where the time derivativeut can be computed with help from the Navier–Stokes equations.
Thus, one obtains

u
n+ 1

2
i, j = un

i, j +
1t

2

{
µ

ρ
Lun

i, j − [(u · ∇)u]n
i, j −

Gpn
i, j

ρ
+ Fn

i, j

ρ

}
, (31)

for the predicted velocity field, which can be rewritten as

u
n+ 1

2
i, j − un

i, j

1t/2
+ Gpn

i, j

ρ
= µ

ρ
Lun

i, j − [(u · ∇)u]n
i, j +

Fn
i, j

ρ
. (32)

Note that besides the velocity at the half time level, the pressure gradient at timen is also
not known. By imposing the requirement

D · un+ 1
2 = 0, (33)

one can solve (32)–(33) simultaneously for the velocity field and for the pressure.
Since the vectorsu andF appearing on the right hand side of (32) are known at time

tn, the computation of the predicted velocity fieldun+1/2 depends on the definition of the
spatial discretization for the nonlinear advection term at timetn. A standard second-order
discretization is (see [31])

[(u · ∇)u] i, j ≈
(

ui− 1
2 , j

(ui+ 1
2 , j
− ui− 3

2 , j

2h

)
+ v̄i− 1

2 , j

(ui− 1
2 , j+1− ui− 1

2 , j−1

2h

)
,

ūi, j− 1
2

(
vi+1, j− 1

2
− vi−1, j− 1

2

2h

)
+ vi, j− 1

2

(
vi, j+ 1

2
− vi, j− 3

2

2h

))
, (34)

which is not in conservation form, and where the time indicesn were suppressed in favor
of clarity. In the approximation (34),

v̄i− 1
2 , j
=
vi, j− 1

2
+ vi, j+ 1

2
+ vi−1, j+ 1

2
+ vi−1, j− 1

2

4

ūi, j− 1
2
=

ui− 1
2 , j
+ ui− 1

2 , j−1+ ui+ 1
2 , j−1+ ui+ 1

2 , j

4
.

The numerical solution of the system (32)–(33) is obtained on composite MAC-grids by
a discrete projection method, similar to the one described in the next section. Once this
system has been solved, the computation of the nonlinear advection term [(u · ∇)u]n+1/2 is
then completed by again applying (34), this time toun+1/2.
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7. NUMERICAL SCHEME AND SOLUTION ALGORITHM

7.1. Set of Discretized Equations

The implicit scheme proposed that (9)–(10), (14)–(16) can be solved numerically through
an iterative approach. Giveninitial guesses Gpn+1/2,0,Xn+1,0, andFn+1/2,0 the new state of
the system,(Xn+1, un+1), is computed by

u∗,m − un

1t
+ Gpn+ 1

2 ,m−1

ρ
= µ

ρ
L

(
u∗,m − un

2

)
− [(u · ∇)u]n+ 1

2 + Fn+ 1
2 ,m−1

ρ
(35)

un+1,m − un

1t
+ Gpn+ 1

2 ,m

ρ
= u∗,m − un

1t
+ Gpn+ 1

2 ,m−1

ρ
(36)

D · un+1,m = 0 (37)

[ I − λn+1,m−1A](Xn+1,m − Xn+1,m−1)

= Xn + 1t

2
S∗nun −

(
Xn+1,m−1− 1t

2
S∗n+1,m−1un+1,m

)
(38)

Fn+ 1
2 ,m = 1

2
(Fn + Fn+1,m)

= T0

2

[
Sn
(
D+s D−s Xn

)+ Sn+1,m
(
D+s D−s Xn+1,m

)]
, (39)

wherem,m≥ 1, is the iteration number within each time step.
In the discretized form of Navier–Stokes equations (35)–(37), the difference operators

G, L, andD are those defined by (19), (20), and (18), respectively. The elastic force distri-
bution, the pressure gradient, and the nonlinear advection term are treated as source terms
in (35), the last computed by (34) from a predicted velocity field attn+1/2, as explained in
the previous section.

The fluid–boundary interaction equations (38)–(39) provide updates for the immersed
boundary position and for the elastic force distribution. Equation (38) is a reformulation of
Eq. (29) in terms of a fixed-point iteration, similar to that proposed by Mayo and Peskin
[24], in whichλn+1,m−1 is a diagonal matrix obtained by

λn+1,m−1 = S∗n+1,m−1Sn+1,m−11,

whereS andS∗ were defined in (27) and (28),1(s) is a constant function assuming 1 on
every immersed boundary point, andA is a notation introduced for the difference operator

A =
(

T0

ρ
1t2

)
D+s D−s ,

with D+s andD−s given by (25) and (26).
For the model problem used, the operator [I − λA] in (38) has a periodic–tridiagonal

structure. Further motivation for the choice of this operator can be found in the work by
Mayo and Peskin [24].
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7.2. Projection Method for Composite MAC-Grids

In practice, the solution of (35)–(37) is computed in three steps by a projection method,
specially designed for composite MAC-grids. First, in theparabolic step, one must solve
the implicit parabolic equation (35),

u∗,mi, j − un
i, j

1t
+ 1

ρ
Gp

n+ 1
2 ,m−1

i, j = µ

ρ
L

(
u∗,mi, j + un

i, j

2

)
− [(u · ∇)u]

n+ 1
2

i, j +
1

ρ
F

n+ 1
2 ,m−1

i, j ,

for the provisional velocityu∗,mi, j .
Second, in theelliptic step, one must solve the pressure Poisson equation

D ·
(

1

ρ
Gp

n+ 1
2 ,m

i, j

)
= D ·

(
u∗,mi, j − un

i, j

1t
+ 1

ρ
Gp

n+ 1
2 ,m−1

i, j

)
(40)

with periodic boundary conditions, which is obtained by imposing the incompressibility
constraint (37) to (36). Observe that away from the coarse–fine grid interfaces, the product
of the difference operatorsD andG gives the usual five-point stencil for the LaplacianL.

In the third step, to complete the projection, the provisional velocity fieldu∗,mi, j is decom-
posed using the pressure just obtained in the second step,

un+1,m
i, j = u∗,mi, j −

1t

ρ
G
(

pn+ 1
2 ,m − pn+ 1

2 ,m−1
)

i, j ,

giving as a resultun+1,m, a discretely divergence-free vector field defined on the entire
composite MAC-grid. This step will be referred to as thedecomposition step.

The simplest possible way to solve (35) is by a Gauss–Seidel method which requires,
on composite MAC-grids, the definition ofu∗,m on coarse cell edges underneath fine grid
patches. For accuracy, they are defined bycubic interpolationof the values in the next finer
level above. Employing periodic boundary conditions on level 1 foru∗,m, one can rewrite
the Gauss–Seidel Method on composite MAC-grids in recursive form as

CMACG-GS(level l )
if level l > 1 then

1. define u∗,m on levell − 1 covered cells by cubic interpolation
2. set up u∗,m on ghost cell edges
3. perform one Gauss–Seidel relaxation
4. CMACG-GS (level l − 1)

else
5. perform one Gauss–Seidel relaxation

end
end CMACG-GS

This procedure is repeated for levell varying fromlfinest to 1 until the residual is “small” in
all the grids, for all levels. Recall that all difference operators are well defined, even on grid
borders, since ghost cells were appended to them. Equation (35) is well conditioned, usually
with 15 to 20 repetitions needed to drop the residual to 10−8 on the composite MAC-grid.

The elliptic step is the most difficult step of all. Equation (40), unlike the preceding
equation, cannot be solved numerically by the Gauss–Seidel method since this Poisson
equation is poorly conditioned; sometimes, thousands of iterations are needed for this
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method to converge. Instead, the multilevel–multigrid method described by Minion in [25]
is employed. It solves very efficiently Poisson equations on composite MAC-grids and will
be described in the following.

The implementation of a residual-correction multigrid strategy depends essentially on the
relaxation on individual grids, on the definition of residual problems, especially at coarse–
fine grid interfaces, and on the transfer of information upward and downward between two
successive levels. For the moment, the refinement ratio between levels will be supposed to be
equal to two. This is not essential but it will make the exposition of the multilevel–multigrid
strategy clearer.

The problem to be solved on a composite MAC-grid is

D ·
(

1

ρ
Gp

)
= D · (rhs), (41)

whererhs is just the right hand side of (36), with periodic boundary conditions. All indices
were suppressed for a simpler notation.

The residual–correction problem on a grid at the finest level is defined by

D ·
(

1

ρ
Gψ

)
= r 8 D · (rhs)− D ·

(
1

ρ
Gp

)
, (42)

wherer is the residual andψ the correction.
Given an initial guessψ0, relaxation is performed on each individual grid by the Gauss–

Seidel Method in a red–black fashion,

ψk+1
i, j =

ψk
i+1, j + ψk

i−1, j + ψk
i, j+1+ ψk

i, j−1− h2ri, j

4
, (43)

whereh is the mesh spacing related to the particular grid considered. Since ghost cells at
the grid borders provide boundary values, again the relaxation can be extended to those
cells, where (43) can be formally applied.

To define the residual problem on the next coarse level, one must first compute the residual
of the residual problem (42) at the finer level,

r̃ 8 r − D ·
(

1

ρ
Gψ

)
= D ·

(
rhs− 1

ρ
G(p+ ψ)

)
, (44)

and then, through arestriction operation, transfer it downward onto the next coarse level,
defining, in this way, the coarse residual problem

D ·
(

1

ρ
Gψ̃

)
= Rl

l−1[r̃ ], (45)

whereψ̃ is the coarse correction andRl
l−1 is the restriction opertor.

On uniform grids, normallyRl
l−1 is performed bysimple average, that is,

r̃ l−1
I ,J 8Rl

l−1[r̃ ] I ,J = r̃2i,2 j + r̃2i+1,2 j + r̃2i+1,2 j+1+ r̃2i,2 j+1

4
, (46)
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which preserves the homogeneous Neumann solvability condition∑
i, j

D · (rhs)i, j = 0, (47)

present in all the residual problems (and naturally satisfied under periodic boundary
conditions).

On composite grids, in order to have (47) satisfied on level 1, special care must be taken
at coarse–fine grid interfaces; restriction (46) cannot be performed exactly as written. The
residual computation (44) suggests another way of performing the restriction on composite
grids which will preserve the solvability condition (47). Instead of simply averaging cell-
center values likẽr onto parent cell centers, the restriction is performed on the cell-edge
values [rhs− 1

ρ
G(p+ψ)] by simply averaging them onto the parent cell edges they cover

(also represented byRl
l−1). This procedure can be viewed as a flux correction step. To

complete the definition of the restriction operation for composite grids, on uncovered cells,
one computes the residual as in (42).

After reaching the coaresest level, correctionsψ are transferred upward to finer levels
through the interpolation operator, which is given by a bilinear interpolation. AV-cycle
schedule is used to visit all levels, including physical levels.

The basic algorithm used for the multilevel-multigrid method is

MMM (level l )
if level l > 1 then

1. relaxation
1.1 set upψ l on ghost cell centers
1.2 relax on residual problemD · ( 1

ρ
Gψ l ) = r l , ν1 times

2. flux correction
2.1 set upψ l on ghost cells
2.2 correct flux at grid borders:Gψ l←Gpl + Gψ l

3. residual computationon levell − 1

r l−1←
{

D · (rhsl−1− 1
ρ

Gpl−1
)

on uncoverd cells

D ·Rl
l−1

[
rhsl − 1

ρ
G(pl + ψ l )

]
on coverd cells

4. MMM (level l − 1)
5. interpolate andadd coarse correction:ψ l←ψ l + I l

l−1[ψ l−1]
6. relax on D · ( 1

ρ
Gψ l ) = r l , ν2 times

7. add correction to solution:pl← pl + ψ l

else
8. perform one V-cycle on residual problem

end
end MMM

For the problem presented here, the procedure above is repeated until the maximum residual
in all the grids, for all the levels, is less than 10−8.

More details on the multilevel–multigrid method employed, including details on the
interpolation stencils and on the case when the refinement ratio is four, can be found in the
works by Minion [25] and by Roma [34].
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7.3. Initial Guesses

Finally, the initial guess for the pressure gradient at timetn+1/2 is given by

Gpn+ 1
2 ,0 =

{
0, n = 0,
Gpn− 1

2 , n ≥ 1.
(48)

and for the elastic force distribution, one can use

Fn+ 1
2 ,0 = 1

2
(Fn + Fn+1,0)

Fn+1,0 = T0Sn+1,0
(
D+s D−s Xn+1,0

)
(49)

Xn+1,0 = Xn + 1t

2
(S∗nun + S∗n+1,−1un+1,−1), (50)

whereXn+1,−1 andun+1,−1 are obtained through the expressions

Xn+1,−1 = Xn +1tSnun

un+1,−1 = un +1tun
t = un +1t

(
µ

ρ
Lun − [(u · ∇)u]n + Fn

ρ
− Gpn− 1

2

ρ

)
.

8. RESULTS

This section presents the numerical results obtained in computations performed with the
adaptive version of the Immersed Boundary Method, applied to the model problem described
in Section 2. Briefly, the immersed boundary is given by a simple closed curve, the two-
dimensional analog of an elastic spherical balloon, filled with the same fluid present outside.
Its motion is driven by the elastic force acting on its wall (8), for which the non-negative
constantT0 was taken as 1.0 dyn/cm2.

At time t = 0.0, the initial position of the immersed boundary was an ellipse aligned
in the coordinate directions with horizontal semi-axisa= 0.28125 and vertical semi-axis
b= 0.75×a, centered at (0.5, 0.5); initially, the fluid was at rest, that is,u(x, 0)= 0.0,
x∈Ä= [0, 1]× [0, 1], Ä doubly periodic. Under these conditions, if the integration time
were long enough, the immersed boundary would tend to a circle, its equilibrium configu-
ration, in a damped oscillatory motion.

In all the computations that follow, the mass densityρ has been set to 1.0 g/cm3, the
viscosityµ to 0.01 g/(cm s), and the immersed boundary, as mentioned previously, has been
uniformly covered by grids at the finest level. TakingL B= 2π

√
(a2+ b2)/2 as the length

of the immersed boundary at timet = 0.0, the number of immersed boundary points was
set to

NB = 2
L B

hfinest
, (51)

which gives an average density of two immersed boundary points per meshwidth. This
density was kept constant in all the runs, whether uniform or composite grids were used in
the simulations, with the total number of immersed boundary points adjusted appropriately,
and with their location the same for grids with the same finest meshwidth.
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With the initial conditions and physical parameters selected as above, the immersed
boundary position was integrated up to timet = 0.5, when its first oscillation was almost
complete. During this motion, the minimum length assumed by the major axis was about
75% of its initial length. The time steps were given by the hyperbolic restriction

1t = C
hfinest

‖u‖∞ , (52)

with constantC= 0.5.
Before any numerical results for the state variables(X, u) are presented, a description

of how norms on uniform and on composite grids were computed will be given. For the
immersed boundaryX(sk)= (X1(sk), X2(sk)), 1≤ k≤ NB, the discretizedL2-norm is given
by

‖X‖2 =
(

NB∑
k=1

(
X2

1(sk)+ X2
2(sk)

)
1s

)1/2

,

where1s= hfinest/2 is approximately the distance between two consecutive immersed
boundary points.

For the fluid velocity, there are two different discretizations of the domainÄon a staggered
grid: Äh

u, where the first component is defined, is the union of all midpoints of vertical
edges, andÄh

v , where the second component is defined, is the union of all midpoints of the
horizontal edges. Bearing that in mind, one sees that theL2-norm of the fluid velocity is
given by

‖u‖2 =
∑

i∈Äh
u

u2
i ai +

∑
j∈Äh

v

v2
j bj

1/2

,

where

ai =


H2, on the coarse cell edges,

H2/r 2, on the fine cell edges,

H2(r + 1)/(2r 2), on the coarse–fine interface edges,

(53)

with r the refinement ratio between levelsl andl + 1, andH the mesh spacing of levell .
The weightsbj are defined in the same way.

The first series of numerical results, displayed in Table I, were obtained by applying the
iterative method (35)–(39) on fourN× N uniform grids,N= 16, 32, 64, and 128, and then

TABLE I

Uniform Grid Results

hfinest 1/16 1/32 1/64 1/128

N 16 Ratio 32 Ratio 64 Ratio 128

‖XN − X256‖2 1.166× 10−2 8.61 1.355× 10−3 2.16 6.265× 10−4 3.19 1.961× 10−4

‖uN − u256‖2 1.300× 10−1 2.69 4.833× 10−2 3.09 1.564× 10−2 3.41 4.582× 10−3
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by comparing the immersed boundary position and the fluid velocity at the final timet = 0.5
with a finer solution obtained on the uniform grid withN= 256.

Further remarks on the norm computation must be made at this point. From one test case
to the next finer one, the set of immersed boundary points was increased by including a new
point midway between each two previously existing points. By adopting this procedure,
the density of immersed boundary points per meshwidth was kept constant from one case
to the next finer one, and the norms involving the immersed boundary points could be
computed simply by using the points which were “common” to both, the case being run
and the 256× 256 case (these common points occupied the same position at the initial
time; the other points required on the finer grid were simply neglected). Also, note that the
fluid velocity is computed at different points for grids with different meshwidths; so, before
computing the norms of their differences, the solution defined on the finer grid had to be
interpolated to the coarser grid points (second-order accurate interpolation was used).

For each time step, the method was allowed to iterate until the difference between two
consecutive updates of the immersed boundary position at the end of that time step satisfied
a certain prespecified convergence criterion which, kept fixed for all the cases, was chosen
as

‖Xn+1,m − Xn+1,m−1‖∞ ≤ (0.5× 10−4)h256, (54)

wheren denotes the current time step,m the current iteration number (within the particular
time stepn), andh256 the meshwidth of the 256× 256 uniform grid.

Since the comparison of the results was made with a solution which was not as fine as
ideally it should be, one cannot expect convergence ratios of two and four to mean first-
and second-order accuracy, respectively. Instead, assuming that the numerical solution of
the immersed boundary position has an asymptotic expansion in powers ofh, the accuracy
q of the method can be estimated, for example, from the ratio

‖X016− X256‖2
‖X032− X256‖2 ≈

∥∥( 1
16

)q
Eq −

(
1

256

)q
Eq

∥∥
2∥∥( 1

32

)q
Eq −

(
1

256

)q
Eq

∥∥
2

=
(

24q − 1

23q − 1

)
, (55)

whereEq is a coefficient which may depend on time but not onh. Estimates can be similarly
derived from the other uniform grid results, giving

‖X032− X256‖2
‖X064− X256‖2 ≈

(
23q − 1

22q − 1

)
(56)

‖X064− X256‖2
‖X128− X256‖2 ≈

(
22q − 1

2q − 1

)
. (57)

Note that the same estimates will hold if similar conditions are assumed for the fluid velocity.
Using expressions (55)–(57), one can obtain estimates for the convergence ratios for

q= 1 andq= 2, and then compare them with the computed convergence ratios contained
in Table I. Table II shows these estimated convergence ratios for first- and second-order
accurate methods. A comparison between the computed convergence ratios, displayed in
Table I, and the estimated convergence ratios, displayed in Table II, shows that the method
exhibits a first-order asymptotic behavior for both state variables in theL2-norm.
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TABLE II

Estimated Convergence Ratios for First-Order (q= 1)

and Second-Order (q= 2) Accurate Methods

Order Ratio (16–32) Ratio (32–64) Ratio (64–128)

q= 1 2.14 2.33 3.00
q= 2 4.05 4.20 5.00

The next series of numerical results were obtained by employing the adaptive multilevel
approach to the same model problem. Composite grids were generated by flagging a seven
by seven coarse-cell neighborhood around each of the immersed boundary points. This
avoided too many regridding steps by making sure that the boundary points would have
enough room to move for several time steps. Also, the border of a fine level was maintained
three coarse cells away from the border of the next coarser level (a more stringent criterion
than would be sufficient for grids to be properly nested). These numbers were selected after
few numerical experiments and may be case dependent. By following this procedure, the
cells so flagged served as input to the grid generation routines which, with at least 75% of
efficiency, produced the fine grids.1

On composite grids generated as explained above, the regridding process took place only
when an immersed boundary point moved fewer than four cells away from the border of the
finest level. This guaranteed that there would be at least two cells between the border of the
finest level and the support of the discretized delta function, a precautionary measure taken
to prevent errors in the fluid velocity at coarse–fine interfaces from affecting the computation
of the immersed boundary velocity during the interpolation step. Note that if discretizations
with wider supports were used for the delta function, the equivalent regridding criterion
would require more than four cells. For example, if a four-cell supported delta function
were used, regridding would have to take place when an immersed boundary point moved
fewer than five cells away from the border of the finest level to keep this border at least two
cells away from the delta function support.

In the first two numerical columns of Table III, one extra level refined by the ratio 2 was
added to base levels of 32× 32 and 64× 64 cells. Briefly, the resulting composite grids will
be denoted respectively by “32(L2R2)” and “64(L2R2),” whose reading, for example for
the first case, is “32 cells in each direction in the base level, two levels altogether, refinement
ratio 2.” The degree of accuracy obtained was comparable to that obtained for the 64× 64
and 128× 128 uniform grids respectively (compare with the last two columns of Table I).

Note that only grids at the same level were used to cover the immersed boundary, al-
lowing for its norms to be computed in the same way in which they were computed on
the uniform grids. For the norms involving the fluid velocity, the solution obtained on the
uniform 256× 256 grid had to be first interpolated to the composite grid points under con-
sideration.

The last two columns of Table III illustrate in more depth the potential of this adaptive
multilevel approach. Due to the localized refinement around the immersed boundary, results
comparable to those obtained on a uniform grid 128× 128 were obtained on the composite

1 Efficiency was measured by the ratio between the area of the input tagged region over the area of the output
generated grid.
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TABLE III

Composite Grid Results

hfinest 1/64 1/128 1/128 1/128

N 32(L2R2) 64(L2R2) 32(L3R2) 32(L2R4)

‖XN − X256‖2 6.186× 10−4 2.016× 10−4 1.951× 10−4 1.951× 10−4

‖uN − u256‖2 1.569× 10−2 4.598× 10−3 4.637× 10−3 4.640× 10−3

grids 32(L3R2) and 32(L2R4). In all three cases, the mesh spacing around the immersed
boundary was the same, equal to 1/128. Figure 4 shows all the composite grids used in the
case 32(L3R2).

Compared to the original regridding strategy employed in [34], when regridding was
performed according to a fixed schedule every few time steps, the current strategy can
generate up to less than 10% of the total number of composite grids needed previously. The
main reason for such improvement is that, now, the total number depends essentially on
the amplitude of the immersed boundary motion. Note that if the code is to adapt based on
a nonsmooth flow field elsewhere, and not just around the immersed boundary, it may be
necessary to employ both the current and the previous strategies together, the final decision
being problem dependent. Nevertheless, when the Reynolds number is not so high (500 or
so, e.g., the blood flow in the heart chambers), the flow is not expected to be nonsmooth
away from the immersed boundary; the natural choice for the regridding strategy, in this

FIG. 4. Composite grids and boundary positions used for case 32(L3R2).
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case, is the one introduced here. Less than 0.5% of the total running time was spent to
recompute and move the composite grids.

Although composite grids and uniform grids with the same mesh spacing around the
immersed boundary exhibited comparable resolutions, a considerably smaller number of
state variables had to be defined for composite grids. For example, the solution of the problem
on the uniform grid 128× 128 required the definition of the state variables on 16,384 cells,
while an equivalent resolution obtained on the composite grid 32(L3R2) required only
about 45% of that number of cells, distributed among about 10 grid patches (not taking into
account ghost cells).

The number of computational cells plays an important role. By requiring fewer compu-
tational cells than the uniform grid Immersed Boundary Method, this adaptive approach
can be used to solve problems with resolutions which could not be achieved previously on
uniform meshes due to the prohibitive amount of computer memory required.

For problems that can be tackled by both approaches, where the amount of memory is
not the issue, the smaller number of computational cells needed by the adaptive approach
suggests that computer time might be saved for, in this case, the solution of smaller systems
will be required. Since the current adaptive code has not yet been optimized for performance,
it remains to be seen whether savings in running time can in fact be achieved by the
methodology described in this paper.

9. CONCLUSION

By combining the Immersed Boundary Method with an adaptive mesh refinement, one
obtains a multilevel version of that method with self-adaptive capabilities.

This approach is tested for a particular two-dimensional model problem, for whichno
significant differenceis found between the solutions obtained on a mesh refined locally
around the immersed boundary, and on the associated uniform mesh, built with the resolution
of thefinest level.

A Crank–Nicholson type of scheme is the basis for the second-order projection method
employed to solve the Navier–Stokes equations on composite MAC-grids. The nonlinear
convection term is explicitly computed at half-time levels with simple edge-centered differ-
ence stencils, suited for Reynolds numbers in the range of 10 to 100. A rather sophisticated
multilevel–multigrid method is used to solve numerically the pressure Poisson equation in
the projection step.

An implicit version of the Immersed Boundary Method is employed to free the method
from its time-step restriction

1t = O
(
h2

finest

)
,

which can be intolerable if several levels are used. The elastic force distribution was in-
troduced as a forcing term in the parabolic step and the immersed boundary position was
updated by the Trapezoidal Rule.

Although formally second-order accurate, in practice, the method is only first-order
accurate (overall accuracy) due to the nonsmooth flow field near the immersed bound-
ary. Another numerical aspect specific to this implementation of the Immersed Boundary
Method is that it employs a discretization of the delta function which is only three-cell
supported.
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The new regridding strategy made the total number of composite grids generated de-
pendent on the amplitude of the immersed boundary motion. Compared to the original
regridding strategy employed in [34], when regridding was performed according to a fixed
schedule every few time steps, the current strategy can generate up to less than 10% of the
total number of composite grids needed previously. For applications where the Reynolds
number is not so high, the flow is expected to be smooth away from the immersed boundary,
and the natural choice for the regridding strategy is the one introduced here.
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